Hero Image 3840x2160px 3

Improving Offshore Weather Forecasting with Machine Learning

StormGeo’s advanced machine learning system, DELFI, promises to improve offshore weather forecasting, helping the offshore wind industry reduce operational downtime and ensure personnel safety.

“All models are wrong, but some are useful,” the statistician George Box wrote in 1976. This familiar aphorism sheds light on the fact that models cannot capture the complexities of the real world. Whether we use models to study financial market mechanisms, predict optimal healthcare strategies, or for any other use case, they can be useful but never truly accurate.

The same goes for numerical weather prediction. As most of us have experienced watching the weather on TV, weather forecasts are rarely perfect. Like all forecast models, weather models are only an approximation of the world that tries to predict the conditions of the atmosphere by collecting quantitative data and relying on advanced calculation methods.

Recent technological advancements, however, promise to improve the accuracy of weather forecasting. Today, advanced machine learning techniques and increased computing power can reduce weather forecast errors, ultimately helping meteorologists develop better predictions.
This is good news for the offshore wind industry, as the weather plays a critical role in the construction, maintenance, and productivity of offshore wind farms. Wave height determines the working windows of wind farm installation vessels and limits the accessibility of wind turbines for maintenance. Lightning and thunderstorms can endanger the safety of maintenance crews working on the turbines. And strong winds can reduce the operability of cranes and thereby limit the working windows during installation.

With more accurate weather forecasts at hand, offshore wind players can efficiently reduce downtime and costs while simultaneously increasing the safety of personnel and maintenance crews.

As a global partner for the offshore wind industry, StormGeo always strives to improve its weather forecasts to help offshore wind developers and operators ensure safer and more efficient wind farm installations and maintenance. That is why we have developed DELFI, a weather forecasting algorithm that leverages the power of machine learning to improve offshore wind operations and maintenance worldwide. 

Want to learn more about how we support the offshore wind industry? Speak to one of our experts today.

DELFI Increases Forecast Accuracy

StormGeo has successfully used DELFI to improve weather forecasts for several offshore locations – even though the machine learning system is still in its early development stages.

For example, a multinational energy company recently leveraged DELFI to improve their understanding of metocean characteristics on one of their offshore locations in the North Sea. By relying on DELFI’s machine learning capabilities, the offshore site improved its results significantly compared to traditional weather forecasting methods.

The figure below shows an improved forecast accuracy at the offshore location (figure 1). The blue curve indicates observations, showing measured wave height for nine days during Autumn 2021. The orange line represents the numerical weather prediction model. The green line represents the DELFI forecast – and catches the variability correctly.

For some offshore clients, the difference between 1,9 and 2,2 meters of wave height is critical to their operations and their ability to ensure safety and efficiency and reduce operational downtime. And offshore operators, in general, increasingly focus on the cost-benefit of having more accurate forecasts. Leveraging machine learning techniques helps us adapt to these changing business needs by increasing weather forecasts’ quality, accuracy, and efficiency.

Figure 1: Time series of significant wave height forecast from 2021-10-30 to 2021-11-07. The time series of model and DELFI forecasts shown here are based on a 0 to 12 hours lead time.

A Bright Future for Offshore Weather Forecasting with Machine Learning

The first use cases for DELFI are promising, and the system will keep on improving and extending to improve forecast quality in even more industries and for more advanced situations. And DELFI will only enhance its accuracy as it gets more use cases to learn from. We currently train DELFI to improve the forecasts weekly, using a full range of machine learning techniques, as new and updated observation data from offshore wind farms and other offshore installations come in.

Once implemented, DELFI can result in significant weather forecast accuracy improvement, ultimately helping offshore wind developers and operators safely plan their operations and improve operational spending.


By: Intissar Keghouche
Originally published in Wind Power Engineering

 

Dr. Intissar Keghouche is a senior scientist with expertise in operational oceanography, metocean forecasting, and statistics. She holds a Ph.D. in physical oceanography from the University of Bergen. Currently, she leads DELFI, a project which combines observations and numerical weather predictions to enhance the skills of weather forecasts using ML techniques.
 

Want to learn more about how we support the offshore wind industry? Speak to one of our experts today.
Orsted case study tier 1

Case study: How live, accurate forecasting boosts Ørsted's offshore wind projects in the USA

Offshore wind is taking off in the USA, thanks in large part to the expansion of Danish offshore wind giant Ørsted into the US market.

Continue reading
Orsted RGB Blue